Fundamentals of Engineering Design
FED 101
2 credits

Class meetings: Thursday, 10:00 am -12:55 pm

Room 411 Tiernan Hall (Computer Lab)\Room 206 Tiernan Hall (FED Lab)

Instructor: Dr. Irina Molodetsky
Room 350 Tiernan Hall
Office hours: Monday, 1-2:30pm; Thursday: 3-5:00 pm
Please, contact by email for additional meeting
Email: Irina.Molodetsky@njit.edu

TA: Chris Dobrzanski
Room 321A Tiernan Hall
Email: cdd23@njit.edu

What you will learn from taking this course:
• Conceptual understanding of relationship between energy, pressure and fluid flow
• Elements of the flow system design
• How to measure the flow rate and relationship between the mass flowrate, volumetric flow rate and average flow velocity
• How to measure static pressure in the fluid
• How to design and build a model flow system
• How to predict and measure energy losses in a single flow system
• Different unit systems and how to perform unit conversion
• Introduction to measurements, data analysis and data reporting
• Working as a team

If you need accommodations due to a disability please contact Chantonette Lyles, Associate Director of Disability Support Services, Fenster Hall Room 260 to discuss your specific needs. A Letter of Accommodation Eligibility from the Disability Support Services office authorizing your accommodations will be required.
Course Syllabus and Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
</tr>
</thead>
</table>
| **W1** | **Course Introduction.**
> Instruments and engineering measurements
> • How to measure pressure in the gas, in liquid
> • How to quantify/measure fluid flow
> • How to control fluid flow

Energy-Pressure relationship in the fluid
> • Pressure (gas, liquid, solid) . Static pressure. Pascal law
| **W2** | **10 minutes quiz #1**
BERTOULLI equation. Fluid flow characteristics
> • Average fluid velocity, \(\bar{v} \)
> • Volumetric flow rate, \(Q \)
> • Mass flow rate, \(\dot{m} \)

Flowmeters
> • How to measure the flow rate
> • Principle of the rotameter (one of the types of flowmeters)
> • How to measure the gas (air) flowrate (air)
> • What are STP conditions in Engineering and SI unit systems

Excel.
> Statistical errors. Accuracy. Precision.

Design of the experiment: calibration of the flowmeter

Safety lecture.
Lab: Construction and measurements: calibration of flowmeter
| **W3** | **10 minutes quiz #2**
Units. Primary units, SI, English. Dimension units
Exercises
Centrifugal pump.
> • Energy conversions in the flow system with a pump.
> • Head (units conversions)

Introduction to Visio
Design of the experiment: centrifugal pump
Lab: construction of the experiment |
<table>
<thead>
<tr>
<th>Week</th>
<th>Event</th>
</tr>
</thead>
</table>
| W4 | 10 minutes quiz #3
Problem solving session (unit conversions)
Lab: centrifugal pump
Final report “Calibration of Flowmeter” is due |
| W5 | 10 minutes quiz #4
Exercises and problems solving (Static, hydrostatic and dynamic pressure; ideal gas eq.of state -units)
Study guide for the test |
| W6 | 10 minutes quiz #5
Problem solving session (Bernoulli equation)
Single flow through a packed column
Laminar and turbulent flows. Re number.
Introduction to a final design project. Design of the experiment
Practice test #1 – homework |
| W7 | 10 minutes quiz #6
Single flow through a packed column
Laminar and turbulent flows. Re number. Ergun equation
Ergun equation: pressure drop calculations (discussion of parameters: effective particle size; void fraction, surface area, g_c conversion factor)
Practice test #2 - homework |
| W8 | TEST
Work on the final design (Visio)
Discussion of the application of spray column, packed columns |
| W9 | 10 minutes quiz #7
Test –lessons learned, unit conversions
Ergun equation (Excel)
Analysis of the final design: discussion of requirements
Lab: construction |
<table>
<thead>
<tr>
<th>10 minutes quiz #8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W10</td>
<td>Lab: construction and measurements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 minutes quiz #9</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W11</td>
<td>S.Ergun paper – discussion of the concepts</td>
</tr>
<tr>
<td></td>
<td>– Viscosity (dynamic and kinematic)</td>
</tr>
<tr>
<td></td>
<td>Two-phase flows in the packed column</td>
</tr>
<tr>
<td></td>
<td>– Demo in the lab</td>
</tr>
<tr>
<td></td>
<td>Lab: construction and measurements</td>
</tr>
<tr>
<td></td>
<td>Requirements for final presentation - uploaded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 minutes quiz #10</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W12</td>
<td>Review lecture and “300 words” assignment</td>
</tr>
<tr>
<td></td>
<td>Individual final reports are due</td>
</tr>
<tr>
<td></td>
<td>Work on final presentation (data analysis)</td>
</tr>
</tbody>
</table>

| W13 | Meeting with individual teams to give a feedback for submitted ppt slides; |

| W14 | Final demo and ppt presentations |